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SUMMARY

Calculations of unsteady 2D ¯ow around a square cylinder at incidence �a � 0� 45�� are presented. The
Reynolds numbers are low (Re� 45±200) so that the ¯ow is presumably laminar. A von KaÂrmaÂn vortex sheet is
predicted behind the cylinders with a periodicity which agrees well with experiments. An incompressible
SIMPLEC code is used with a non-staggered grid arrangement. A third-order QUICK scheme is used for the
convective terms. The time discretization is implicit and a second-order Crank±Nicolson scheme is employed. At
the outlet of the computational domain a convective Sommerfeld boundary condition is compared with a
traditional Neumann condition. The convective boundary condition is shown to be more effective in reducing the
CPU time, reducing the upstream in¯uence of the outlet and thus reducing the necessary downstream extent of
the domain. A study of the effects of spatial resolution and blockage is also provided. The onset of vortex
shedding is investigated by using the Stuart±Landau equation at various angles of incidence and for a solid
blockage of 5%. A number of quantities such as Strouhal number and drag, lift and moment coef®cients are
calculated. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The ¯ow around slender cylindrical bluff bodies has been the subject of intense research in the past,

mostly by experiments but recently also by using numerical simulation. This ¯ow situation is popular

not only because of its academic attractiveness but also owing to its related technical problems

associated with energy conservation and structural design. This type of ¯ow is of relevance for many

practical applications, e.g. vortex ¯owmeters, buildings, bridges, towers, masts and wires.

Under normal circumstances and when these bluff structures are exposed to cross-¯ow, there is a

massive separated region downstream of the body. Owing to wake instabilities, a time-periodic

oscillation develops at some critical onset Reynolds number Recr. This is the BeÂnard±von KaÂrmaÂn
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instability.1 The periodic phenomenon is referred to as vortex shedding, while the antisymmetric

wake ¯ow pattern is normally referred to as the KaÂrmaÂn vortex street. In the laminar reÂgime, which

usually persists up to Reynolds numbers of about 200, the vortex shedding is characterized by a very-

well-de®ned frequency.

1.1. Problem under consideration

The ¯ow con®guration is depicted in Figure 1. A ®xed two-dimensional square cylinder with side

A is exposed at some angle of incidence a to a constant freestream velocity U1. Incompressible ¯ow

with constant ¯uid properties is assumed. The Reynolds number is de®ned as Re � U1d=n, where d

is the projected width of the cylinder in the streamwise direction, d=A � cos a� sin a
�0�4a4 45�). All geometrical lengths are scaled with d. The scaling with d also applies to the

Strouhal number St � fSd=U1, where fS is the shedding frequency, and to all forces and moment

coef®cients. The vertical distance between the upper and lower walls, H, de®nes the solid blockage of

the con®ned ¯ow (blockage parameter b � 1=H�. Velocities are scaled with U1 and physical times

with d=U1. The pitching moment M is referred to the geometrical centre, with positive values in the

clockwise direction. The origin of force co-ordinates is placed at the geometrical centre, with drag

force D positive in the x-direction and lift L positive in the y-direction; see Figure 1. The base suction

coef®cient ÿCpb was calculated from the pressure at the intersection of the cylinder and the base

centreline. The stagnation pressure coef®cient Cps was calculated at the mean point of primary

attachment, i.e. at the time-averaged stagnation point.

The main objective of the present study is to provide reliable results from simulations of ¯ow

around square cylinders at incidence �a � 0� ÿ 45�� for different Reynolds number up to 200. Apart

from discussions on general ¯ow features and further aspects of grid dependence, particular emphasis

is put on effects of blockage, effective outlet boundary conditions and the onset of vortex shedding.

1.2. Review

1.2.1. Experimental. A considerable amount of experimental data has been gathered for square

cylinders with one side facing the ¯ow. However, experiments on the detailed effects of the angle of

incidence are much scarcer; see e.g. References 2 and 3 and reference cited therein. In all these

studies the Reynolds numbers are relatively high, ranging from about 500 to 105. At Reynolds

numbers relevant to this study, i.e. Re4 200, the only experimental results available in the open

literature seem to be those in References 4±8, which are all for a � 0�. In References 6 and 7 St;CD

and ÿCpb are shown for Reynolds numbers from about 100 upwards. (St from about Re � 70), while

Figure 1. Flow con®guration (left) and close-up of grid near cylinder (right)
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in Reference 5 only St is shown for Re5 200. In addition, an St ÿ Re relationship for Re4 400 is

provided by recent experiments of Norberg and co-workers.8

1.2.2. Numerical. For Re4 500 some relevant parameters from selected numerical investigations

on 2D ¯ow around a square cylinder are summarized in Table I. References 4, 9 and 10 use a co
formulation, while the rest use primitive variables. For investigations on con®ned ¯ow at high

blockages see References 11 and 12. Note that in Reference 9, which apart from the present

investigation is the only one covering arbitrary angles a � 0�±45�, the Reynolds number is calculated

based on the side dimension A. For most investigations in Table I, i.e. References 8 and 13±16 as well

as the present results, the upper and lower boundaries are treated as frictionless walls. In contrast, in

References 5±7, 9 and 17 the upper and lower boundaries are assumed to be at the freestream

condition.

In previous investigations the distance from the computational inlet to the cylinder, Xu in Table I,

varies between Xu � 4 in References 15 to Xu� 125 in Reference 10. As shown in References 8 and

16, when using a freestream condition at the inlet, the necessary distance for obtaining results

independent of this inlet location is about 10 units. For instance, as shown in Reference 16 for

Re � 100, when Xu was increased from 7�5 to 11�1 units, there was a 9�3% decrease in RMS lift (the

RMS lift is perhaps the best overall indicator when comparing results in vortex-shedding ¯ows8). A

further increase up to Xu � 18 gave negligible changes in the global results (less than 1%). For all

investigations in Table I, except Reference 10, a freestream condition �U � 1;V � 0 or equivalent)

is prescribed at the inlet.

Stegell and Rockliff10 use a hybrid discrete vortex method in which the physical domain is

approximately circular with a radius of 125 body diameters. A conformal transformation of the co-

ordinate system is used in which the computational domain for solving the viscous diffusion equation

is rectangular but periodic. The physical distance to the nearest grid point from the body at midspan is

typically 0�03. At the outer radius of the physical domain the streamfunction c is set to its rotational

¯ow value and the change in vorticity o due to viscous diffusion is set to zero (Nathan Stegell,

personal communication, 1996).

Table I. Two-dimensional simulations for square cylinder in uniform cross-¯ow �Re4 500�Ðsummary of
computational parameters: H, height of computational domain; Xu, distance from body to inlet; Xd distance from
body to outlet; NM, numerical metod (FD, ®nite differences, FV, ®nite volumes; DV, discrete vortex); N, non-

uniform; U, uniform

Reference Year Re a��� H Xu Xd Dt NM Grid

18, 4 1978=1982 150, 250 0 17 21�9 96�7 0�031 FD N
5 1982 5100 0 12 4�5 9�5±14�5 0�05 FV N

250 5, 15 12 4�5 9�5±14�5 0�05 FV N
19, 6 1987=1990 100, 150, 500 0 11 5 21 0�01 FD N
13 1990 40±300 0 12 4�5 14�5 0�025

(0�012)
FV N

14 1991 100, 500 0 13 5 15 (25) 0�02±0�03 FV N
15 1992 100 0 7 4 9 0�125 FV N
17 1993 100 0 16 7�5 19�5, 59�5 0�01 FD U
9 1994 50±250 0 10 5 15 ? FD U

5±50 0±45 10 5 15 ? FD U
16 1995 45±250 0 14±50 7�5±18 10±56 0�02±0�05 FV N
8 1996 200 0±45 20 10,20 26, 40 0�025

(0�0125)
FV N

10 1996 200 0 125 125 125 0�0035 DV N
Present 45±200 0±45 20 (40) 10 3±26 0�025 FV N
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In numerical simulations of ¯ow around bluff bodies, only a few investigations concerning

parameters such as blockage, upstream=downstream extent, time step, grid resolution and boundary

conditions are found. In each of those studies, only some of these aspects are investigated and no

investigation has been found which extensively covers all these aspects.

For example, the effect of blockage is investigated numerically in References 20±22 for circular

cylinders �Re4 180� and in Reference 16 for square cylinders �Re � 100�. It is shown that with

increasing blockage parameter b the Strouhal number and drag coef®cient increase, while the base

suction and stagnation pressure coef®cients increase. At high Reynolds numbers this is also observed

experimentally for rectangular cylinders, circular cylinders and ¯at plates.23±25 Some further effects

of blockage are provided in Section 4.2.

The in¯uence of domain size, especially the location of the out¯ow boundary, Xd in Table I, is

investigated in References 16 and 26 for Re � 100 and in Reference 8 for Re � 200. Behr et al.26

consider the ¯ow around a circular cylinder using a c o formulation and by applying two types of

outlet boundary conditions. It is shown that if Xd is selected less than 2�5 diameters from the body,

then the temporal periodicity of the solution is lost. The minimum value of Xd is found to be 6�5. It is

also concluded that reliable results for both types of boundary conditions are obtainable with

Xd � 14�5. In Reference 16 the in¯uence of Xd between 10 and 56 is investigated �Re � 100� using

the standard Neumann condition at the outlet (hereafter referred to as the NBC). The results indicate

that in order to obtain results independent of the outlet, Xd must be larger than about 20. Further

investigations in Reference 8 con®rm this suitable extent also for Re � 200. It is believed that this

seemingly large discrepancy in the suitable value of Xd is due to the actual type of outlet boundary

condition used. Obviously, in these vortex-shedding ¯ows, the distance from the cylinder to the outlet

�Xd� is a parameter of special importance. This matter will be pursued further in Section 2.1.

Some re®nement studies are carried out in References 8, 13, 14 and 16. Franke et al.,13 who

consider both circular and square cylinders, present some limited studies with different time steps and

near-wall resolutions. They conclude that the distance of the ®rst grid point away from the body (d)

has a strong in¯uence on the results. For ¯ow around square cylinders at Re � 100 and 200 they used

d � 0�0038 and 0�0013 respectively (Dt � 0�025 and 0�012). A grid re®nement study for ¯ow around

a square cylinder at Re � 500 is presented by Arnal et al.14 They employ three grids (1196137,

60669 and 40645) and report some signi®cant grid dependences. For example, the RMS lift was

decreased three times when going from the ®nest to the coarsest grid. In previous work of Sohankar et

al.16 for a square cylinder at zero incidence the effects of time step, distribution of grid points, size of

cells adjacent to the body, upstream and downstream extents of the calculational domain and

blockage are thoroughly investigated �Re � 100�. The in¯uence of Reynolds number �Re � 45 250�
at blockage b � 5% is also presented. In that study, when using a highly non-uniform grid, some

recommendations for the required size of the domain, grid distribution, time step and spatial

resolution in the near-body region are provided. In recent work of Sohankar et al.8 for rectangular

cylinders with side ratios B=A � 1; 2; 4 at incidence �a � 0� 90�� and Re � 200, special emphasis

was put on factors such as time and spatial resolution, grid dependence, in¯uence of domain size,

general ¯ow features for laminar vortex-shedding ¯ows and effects of angle of incidence and side

ratio. In that study it is concluded that the results may be strongly dependent on the spatial resolution

in both the far and near ®elds. Grid re®nement studies are provided in Section 4.3.

2. NUMERICAL DETAILS

The ¯ow is assumed to be two dimensional and unsteady. An incompressible SIMPLEC ®nite volume

code is used with a non-staggered grid arrangement. The scheme is implicit in time and a Crank±

Nicolson scheme of second order has been used for convective and diffusive terms; the pressure is
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treated fully implicitly. The convective terms are discretized using the third-order QUICK

differencing scheme, while the diffusive terms are discretized using central differences. More details

of the code, equations, etc. are given in Reference 8.

The time-marching calculations are started with the ¯uid at rest. A constant time step Dt � 0�025 is

used for all calculations. During the iterative sequence, convergence is assessed at the end of each

iteration on the basis of the residual source criterion, which compares the sum of the absolute residual

sources over all the control volumes in the computational ®eld, for each ®nite volume equation. The

residuals for the continuity and momentum are normalized with the incoming mass ¯ux and

momentum ¯ux in the x-direction respectively. The convergence criterion is set to 0�001. Tests with a

convergence criterion of 0�0001 and double precision show no signi®cant changes in the results (e.g.

less than 0�5% for the RMS lift), while the number of iterations to convergence increases

approximately two times.

Outside a region from the body which extends 5 units upstream, downstream and sideways, the

grid distribution was made uniform with a constant cell size D. However, for re®nement cases

�D4 0�15� the corresponding grid non-uniform extension was instead 2 units.

The distance from the cylinder surface to the nearest grid point de®nes d. For all calculations in this

paper, d � 0�004. The hyperbolic tangent function was used for stretching the cell sizes between

these limits (d and D); see Figure 1. The number of nodes distributed over unit length of the cylinder

surface is denoted Nb. Unless stated otherwise, the following values apply: D � 0�5;Nb � 20.

2.1. Boundary conditions

One of the chief dif®culties encountered in numerical solution of the Navier±Stokes equations is

that of boundary conditions, especially the out¯ow boundaries. This dif®culty is due to the fact that

the computational domain is bounded whereas the physical domain is unbounded. Thus the

computational domain should be truncated from the real domain by using arti®cial open boundary

conditions such as Neumann (NBC) or convective (CBC) boundary conditions. For high accuracy the

computational domain must sometimes be very large and this increases CPU times and the cost of

computation. Thus proper boundary conditions can reduce the size of the computational domain and

decrease the cost. In most numerical studies, especially those which involve vortex shedding, the

outlet (open) boundary condition is a very important issue.

A suitable out¯ow boundary (i) permits the ¯ow to exit the domain with a smooth discharge of

vortices, (ii) has a minimum effect on the ¯ow in the domain near the outlet and ®nally (iii) has a

negligible effect on the near-body ¯ow. Incorrect location of out¯ow boundaries and non-suitable

boundary conditions might seriously affect the whole ¯ow structure, especially near the body.

For ®nite difference and ®nite volume discretizations the NBC and CBC are the two most popular

outlet boundary conditions. For example, all the studies in Table I, except References 5, 9 and 14, use

an NBC. Arnal et al.14 use a CBC, while Davis and Moore5 employ the momentum equation at the

outlet by ignoring the diffusion terms and employing ®rst-order upwind differencing of the

convective terms for the computation of the velocities. Zaki et al.9 set the second and ®rst derivatives

of the streamfunction and vorticity equal to zero at the outlet.

The particular issue of out¯ow boundary conditions for ¯ow around a square cylinder is

investigated by Yoshida et al.17 For Xd � 20 and 60 they compare four types of open boundary

conditions, namely an NBC and three kinds of CBC. The NBC produced signi®cant deformations of

the outlet velocity and pressure ®elds, while the type of CBC utilizing the freestream velocity was

found to have the least in¯uence. However, results for global parameters such as Strouhal number and

drag and lift coef®cients were more or less unaffected by the outlet condition.
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In previous work of the authors,16 using an NBC at Re � 100 and a � 10�, it is shown that when

the downstream extent Xd is not suf®ciently large, i.e. when Xd < 20 approximately, the global ¯ow

pattern is affected, causing signi®cant changes in the results. In this study we extend that

investigation by using a CBC in a form which has previously been shown to be well suited for

unsteady vortical ¯ow structures moving out of the computational domain.17,27

On reviewing the literature, it is evident that many types of outlet boundary conditions have been

used in the context of vortex-shedding ¯ows. For instance, the second derivative of any dependent

variable at the outlet might be set equal to zero. As reported by Arnal et al.,14 this boundary condition

might lead to numerical instabilities with diverging results. When testing this condition, some similar

instabilities were observed in the present investigation. Sometimes, vanishing third-order streamwise

derivatives of the velocity and pressure at the outlet are used; see e.g. Reference 28. Further

information about different types of boundary conditions can be found in References 29±35.

In general the CBC can be written for both U and V as

@Ui

@t
� Uc

@Ui

@x
� 0;

where Uc is the convective velocity=phase speed (U1 � U ;U2 � V �. In References 17, 27 and 36, the

CBC is tested with both variable and constant (uniform) velocity, with negligible differences in the

statistical results. Thus in this study, as also recommended in Reference 17, the value of Uc was set to

U1. The discretized form of this equation was implemented as

UN* � Un
N ÿ

Dt

�Dx�N
Uc�U n

N ÿ U n
Nÿ1�; U n�1

N � Ucor � UN*;

where the superscript denotes the time level and the index N refers to the streamwise grid number at

the outlet. Ucor is a correction velocity to guarantee the balance between mass in¯ow and out¯ow

(computed from UN*) at each iteration. The correction velocity, which is constant over the entire

outlet, is obtained from the difference between mass in¯ow and out¯ow and is zero at the end of each

time step when convergence is reached.

In this study the following boundary conditions were used. At the inlet, which is located Xu � 10

units upstream of the most upstream corner of the cylinder, a uniform ¯ow was prescribed

�U � 1;V � 0�. At the outlet, which is located Xd units downstream of the most downstream corner,

an NBC and a CBC for both U and V were used. No-slip conditions were prescribed at the body

surfaces. At the upper and lower boundaries, symmetry conditions simulating a frictionless wall were

used �@U=@y � V � 0�. The second normal derivatives for the pressure was set to zero at all

boundaries.

3. ONSET OF VORTEX SHEDDING

For cylindrical structures with non-streamlined forebodies and short afterbodies (e.g. a square

cylinder) the critical Re, when scaled with the cross-stream dimension d, is Recr � 50; see References

8, 15, 37 and 38. As shown by e.g. Provansal et al.,1 Schumm et al.38 and Park,39 the onset from

steady to periodic ¯ow is characterized by a Hopf bifurcation which can be described by the Stuart±

Landau equation

dC

dt
� sC ÿ ljCj2C; �1�

where C�t� is a characteristic complex amplitude associated with the fundamental frequency

component, s � sr � isi is the linear growth rate and l � lr � ili is the ®rst Landau `constant' (for a
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supercritical bifurcation, lr > 0�:38 After linearizing the real part of equation (1) around Recr, where

sr � 0, the instantaneous growth rate at Re > Recr is

S � jCjÿ1 djCj
dt
� sr ÿ lrjCj2 � sr 1ÿ jCj

2

jCj2sat

� �
; �2�

where jCjsat is the envelope amplitude in the saturated state. To ®rst order, at small departures from

onset the real part of sr is a linear function of Reÿ Recr, i.e.

sr � K�Reÿ Recr�; �3�
where K is a positive constant.

Strictly speaking, equations (2 and 3) are valid only at Re very close to onset. Based on

experimental observation (see Reference 38), however, they seem to be applicable for Reÿ Recr

ranging from 7 10 to 20 approximately. From transient real measurements or numerical simulations

at Reynolds numbers close to onset, yielding different values of sr (using viscous time scaling), the

onset value Recr is determined in equation (3) by interpolation. In the present study the function C, as

in Reference 39, was chosen to be the lift coef®cient, i.e. Cr � CL. In this respect, as mentioned in

Reference 38, the analysis relies on the fact that the linear growth rate is independent of location, i.e.

vortex shedding results from a time-ampli®ed global instability.1 The onset may also be studied by

applying linear stability analysis to autonomous dynamical systems.15,37,40,41 As also mentioned in

Reference 38, the vortex shedding during start-up is always two-dimensional. Thus a two-

dimensional method for prediction of the onset of vortex shedding is suitable.

4. RESULTS AND DISCUSSION

An investigation of the in¯uence of computational parameters such as far-®eld resolution, blockage

and domain sizes and outlet boundary condition as well as the in¯uence of onset of vortex shedding,

Reynolds number and angle of incidence was performed. In the fully staturated state, i.e. at physical

times when memory effects of the starting process are negligible, many useful physical quantities

were computed, e.g. the dominating wake frequency (Strouhal number), mean and RMS values for

various wall pressures as well as body lift, drag and moment coef®cients.

4.1. Outlet boundary condition

A study of the in¯uence of the two common outlet boundary conditions NBC and CBC was

performed and the results are compiled in Table II and Figures 2±4. In Figure 2, for Re � 200 and

a � 0�, the time-averaged pressure coef®cient Cp along the centreline is depicted for various

locations of the outlet boundary using both the NBC and CBC. Further comparisons for this ¯ow case

are shown in Figure 3 (effects on time-averaged pressure and vorticity contours) and in Figure 4

(effects on the number of iterations per time step during the time-dependent simulation).

For the NBC cases a pronounced dip in the centreline Cp was present near the outlet (Figure 2,

left); see also Reference 16. Evidently, this distortion was much less when using the CBC (Figure 2,

right). In addition, when Xd is not suf®ciently large, the global ¯ow pattern is seriously affected

(Figure 3), causing signi®cant changes in both pressure and vorticity around the body. However, the

minimum Xd for negligible near-body effects is much lower with the CBC than with the NBC. It is

important to point out, however, that if Xd is suf®ciently large, regardless of the outlet condition

(NBC or CBC), the upstream in¯uence from the outlet is effectively damped out. As an example, on

comparing cases 1 and 2 in Table II, both with Re � 100; a � 0� and the NBC, there is an 83%

decrease in the RMS lift on going from Xd � 26 to Xd � 10. In contrast, case 3 in Table II, also with
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Re � 100 and a � 0� but now with the CBC and Xd � 10, essentially has the same global results as

the NBC with Xd � 26 (case 1).

On comparing results in Table II for the NBC (Xd � 26) and CBC (Xd � 10; 15; 26), the overall

difference is about 1%. Thus, by selecting the CBC, the suitable size of Xd may be as low as 10 (as

compared with about Xd � 25 with the NBC16). Evidently (see Figure 3), the ¯ow using the CBC

exits the domain with a smooth discharge of vortices, with only a small local effect on the outlet ¯ow,

especially for Xd 5 10 where the near-body ¯ow is virtually unaffected.

It is important to emphasize that the suitable value of Xd depends on the Reynolds number. At

lower Reynolds number the viscous diffusion, and consequently the formation length of the

recirculating region behind the body �Lr�, is larger. The maximum value of Lr occurs at around the

onset of vortex shedding.16,42 For example, in the present study the time average of Lr was calculated

to be 3�69, 2�20 and 1�67 for Re� 50, 100 and 200 respectively. Thus at low values of Xd, especially

with the NBC, this near-wake ¯ow might be seriously affected, leading to detrimental effect on the

global results. With the CBC the ¯ow patterns and global results start to deviate from the outlet-

independent ¯ow at around Xd � 10; see Figure 3. For instance, on decreasing Xd from 10 to 5�5,

there was an increase of about 5% in the RMS lift. The in¯uences on the global results became

unacceptable for smaller values of Xd, for example, on decreasing Xd from 10 to 3, the changes in

Strouhal number, RMS lift and base suction coef®cient were 7 8�9%, 6�5% and 6�8% (Re � 100)

and 7 10�3%, 29% and 7 5% (Re � 200) respectively (Table II). Thus it seems that the location of

the outlet boundary with the CBC must be in the region where the gradients of pressure and velocity

are small (Figure 2). In summary, for the CBC the suitable value of Xd seems to be 10 units.

However, for safety we recommend 15 units, especially at Re < 100 for which the recirculating

region behind the body is larger and the ¯ow more viscous.

The NBC generates disturbances in the upstream ¯ow which evidently are damped out rather

slowly. This causes the number of iterations per time step, Nit, to increase, especially when compared

with the CBC; see Figure 4. In Table II the average number of iterations per time step in the saturated

condition of vortex shedding, Np, and the average number of iterations per time step for the whole

simulation, Nt (6300 and 4300 time steps for Re � 100 and 200 respectively), are provided. As these

numbers are measures of the CPU time of calculation, there was a signi®cant saving in CPU time on

going from the NBC to the CBC, at least for the case at zero incidence. In addition, the CBC causes

an earlier transition to fully periodic saturated ¯ow; see Figure 4. In other words, the CBC in

comparison with the NBC saves CPU time in three different ways: (i) by decreasing the number of

Figure 2. Comparison of time-averaged pressure coef®cient along centreline for NBC (left; Xd � 10; 26� and CBC (right;
Xd � 5�5; 10; 15; 26� at Re � 200
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Figure 3. Comparison of time-averaged pressure (left; DCp � 0�1� and vorticity (right; Do � 0�2� at Re � 200: (a) NBC
(Xd � 10; 26�; (b) CBC �Xd � 10; ; 26; (c) CBC �Xd � 5�5; 10�; (d) CBC (Xd � 3; 10�; (e) NBC �Xd � 26� and CBC
�Xd � 10�. Broken lines correspond to Xd � 10 in (a), (b) and (e), to Xd � 5�5 in (c) and to Xd � 3 in (d)
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iterations for convergence in each time step (up to about 50%), (ii) by decreasing the CPU time for

each iteration owing to reduced Xd (by about 25% on changing Xd from 26 to 10) and ®nally (iii) by

decreasing the time to reach fully periodic ¯ow.

By comparing cases 13 and 14 in Table II, it is found that the CBC is also suitable for ¯ow around

a square cylinder with non-zero angle of incidence. As can be seen, the difference between the results

is less than 1%. Interestingly, it is found that the NBC works better in cases with ¯ow incidence

�a 6� 0��. This may be a result of the fact that these cases had a stronger and more vigorous vortex

shedding as compared with zero incidence (e.g. for Re � 200, where the RMS lift at a � 30� was

three times higher than at a � 0�). The numerical disturbances generated by the NBC could then be

damped out more effectively.

It is important to emphasize that most of these differences in results and ¯ow patterns for different

boundary conditions were not observed when Xd was selected large (e.g. Xd � 26�. This is also

evident from the results of Yoshida et al.17

4.2. In¯uence of blockage

In previous work of the authors16 for a square cylinder at zero incidence the blockage effect was

investigated for Re � 100 and D � 0�7 by using two different schemes for the convective terms

Figure 4. Time evolution of number of iterations per time step for different outlet boundary conditions �Re � 200; a � 0��. Nts

is the time step number

Table II. Effect of outlet boundary conditions

Case Re a BC Xd St CD CDp
CL0 ÿCpb Cps Nt Np

1 100 0 NBC 26 0�147 1�464 1�418 0�138 0�663 1�052 22�8 28�7
2 100 0 NBC 10 0�150 1�491 1�441 0�024 0�691 1�051 32�8 40�3
3 100 0 CBC 10 0�146 1�460 1�414 0�139 0�661 1�052 13�5 12�9
4 100 0 CBC 5�5 0�145 1�452 1�407 0�146 0�661 1�053 13�0 12�3
5 100 0 CBC 3 0�133 1�426 1�382 0�148 0�616 1�052 10�8 10�9
6 200 0 NBC 26 0�167 1�439 1�480 0�227 0�797 1�030 24�2 35�9
7 200 0 CBC 26 0�167 1�428 1�469 0�228 0�797 1�034 15�9 13�8
8 200 0 CBC 15 0�165 1�428 1�468 0�229 0�793 1�034 15�4 13�1
9 200 0 NBC 10 0�167 1�465 1�504 0�240 0�837 1�028 28�8 38�3

10 200 0 CBC 10 0�165 1�427 1�467 0�232 0�792 1�034 15�1 13�1
11 200 0 CBC 5�5 0�165 1�431 1�471 0�241 0�796 1�035 14�6 13�0
12 200 0 CBC 3 0�148 1�398 1�438 0�301 0�752 1�037 13�3 11�5
13 200 30 NBC 26 0�203 1�899 1�729 0�728 1�535 1�044 18�6 16�2
14 200 30 CBC 10 0�203 1�905 1�724 0�728 1�544 1�050 18�0 15�9
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(QUICK, Van Leer). In that study it is reported that the calculations exhibit unphysical oscillations

for a blockage of less than 3% when using the QUICK scheme. For reduction of truncation errors and

numerical diffusion, which are more sever in non-uniform grid simulations, the recent work of the

authors8 as well as this study highlights the special important of a suitable grid distribution and a ®ne

enough far-®eld resolution. In this study, by decreasing the blockage to 2�5% for different Reynolds

numbers, the effect of blockage was investigated and results are compiled in Table III. Since both the

grid distribution and far-®eld resolution were changed in this study in comparison with Reference 16,

we could not detect any unphysical oscillations in the present calculations.

On changing the blockage parameter from b � 5% (see Table III), the strongest effects occurred

for the base suction coef®cient ÿCpb. For Re � 100; 150 and 200 the decrease in base suction was

7�6%, 5.4% and 5�0% respectively. The corresponding changes in other quantities were rather small

(less than 3%). For instance, the maximum decrease in Strouhal number was 1�4%, which occurred

for Re � 100. For the square cylinder at these rather low values of Re we could not ®nd any previous

study with which to make a direct comparison. However, there are some investigations for other

geometries. For example, Behr et al.22 investigate the effect of blockage for a circular cylinder

(Re � 100). Their results show that on decreasing the blockage from b � 5�5% to 1�6%. St;CD and

CL decrease by 5%, 6% and 6% respectively. Similar behaviour can be seen in the other

investigations of blockage; see e.g. References 16 and 20±25.

In summary, on decreasing the blockage for different Reynolds numbers in the range

Re � 100ÿ 200, St;CD;CDp
and ÿCpb decrease, while the stagnation pressure increases. These

changes are all similar to a decrease in the Reynolds number corresponding to the fact that an

increase in blockage is effectively an increase in the oncoming velocity.

4.3. Grid dependence

In recent work of the authors8 an extensive study of various computational parameters is presented.

At least for the non-uniform grids employed in that investigation and for such low-Reynolds-number

vortex-shedding ¯ows, the most crucial parameters for producing grid-independent results seem to be

the far-®eld resolution D and the number of nodes distributed along unit length of the body, Nb. In

this study, by using the CBC, the domain of calculation could be drastically reduced and the

procedure of convergence is faster. These advantages now enable us to use even ®ner and more

uniform grids, which are factors which will further reduce truncation errors and effects of numerical

diffusion.

In Table IV, results are shown for different D down to 0�1. Cases 2 and 5 are taken from Reference

8 (Cps and ÿCpb were not calculated in that study, hence the missing values in the table). For

Re � 200, on decreasing D for 0�5 to 0�1, St;CD;CDp
;CL0 ;ÿCpb and Cps change by about 7 9�0%,

2�5%. 2�6%, 64%, 4% and 0�8% respectively. The majority of these differences occur on going from

D � 0�5 to 0�25. Between D � 0�15 and 0�10, except for CL0 , which changes by 2�7%, the changes in

Table III. Blockage effect study for different Reynolds numbers at a � 0�

Case Re b�%� Grid St CD CDp
CL0 ÿCpb Cps

1 200 5�0 96694 0�165 1�427 1�467 0�232 0�792 1�034
2 200 2�5 966132 0�165 1�415 1�455 0�229 0�752 1�060
3 150 5�0 96694 0�162 1�417 1�429 0�160 0�721 1�040
4 150 2�5 966132 0�160 1�400 1�411 0�166 0�682 1�067
5 100 5�0 96694 0�146 1�460 1�414 0�139 0�661 1�052
6 100 2�5 966132 0�144 1�444 1�399 0�141 0�611 1�083
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the other quantities are negligible. For Re � 100, on decreasing D further below 0�3, the difference

between results is negligible. For this range of Reynolds numbers, Re4 200, it is recommended that

the cell Reynolds number, i.e. the Reynolds number based on D, should be less than 30.

4.4. Onset of vortex shedding

Within the full range of possible incidences, 0�4a4 45�, the simulations indicated the onset to

occur within the interval 40 < Recr < 55. By using the linearized Stuart±Landau equation as outlined

in Section 3, for some selected angles of incidences within this interval the actual onset values were

predicted. In this separate study both time and frequency were non-dimensionalized using the viscous

time scale d2=n, where n is the kinematic viscosity. The shedding frequency scaled in this way is

usually referred to as the Roshko number

Ro � fSd2=n � Re� St: �4�
The following procedure was employed for ®nding Recr. As mentioned earlier (Section 3), the lift

coef®cient was selected as the raw signal in the analysis; see Figure 5(a). For each selected angle of

incidence and each Re close to onset the value of sr was found from equation (2) by ®tting a straight

line in a plot of the non-dimensional instantaneous growth rate S versus the ratio jCj2=jCj2sat � R; see

Figure 5(b). The critical Reynolds number was then simply found from the location of sr � 0 after

®tting, according to equation (3), a straight line in a plot of sr versus Re; see Figure 5(c). Note that for

Re below onset the growth rate is negative. For some cases, e.g. for Re � 50 and a � 0� (see Figure

5(c)), these values could be extracted from the simulations also. In these cases the disturbances from

the start-up process caused shedding to commence for a short period of time.16 Eventually, since Re

was below onset, the shedding faded away (with a negative growth rate).

The critical Reynolds numbers are plotted in Figure 5(d). As is evident from Figure 5, the

procedure did not always produce perfect ®ts. Moreover, at each angle of incidence the number of Re

cases which could be analysed was rather small, only three to four. This means that the values of Recr

found from the analysis have to be tagged with uncertainty intervals. The uncertainty was estimated

to be � 2%, corresponding to � 1 for each Recr. It is important to mention that the simulations with

the ¯ow starting from rest will eventually certify whether the simulated Reynolds number is actually

blow or above the onset. For instance, at a � 0� the ¯ow for Re � 50 eventually became completely

steady, whereas for Re � 55 the ®nal state was a ¯ow with a stable time-dependent shedding process;

see Figure 5(a). Thus in this case the onset must occur in between these two Reynolds numbers; see

also Reference 16.

It follows from the linearization theory (see e.g. Reference 38) that the shedding frequency close to

onset should be linear in Reynolds number, i.e. R0 � C0 � C1 Re. At each a the frequency data were

®tted to the above relationship �Recr < Re < 65�. The critical shedding frequency was then calculated

as Rocr � C0 � C1Recr. The critical values are compiled in Table V.

Table IV. Re®nement study at a � 0�

Case Re D Nb BC Xd Grid St CD CDp
CL0 ÿCpb Cps

1 100 0�50 20 CBC 10 96694 0�146 1�460 1�414 0�139 0�661 1�052
2 100 0�30 20 NBC 26 1916141 0�146 1�477 1�433 0�156 Ð Ð
3 100 0�15 40 CBC 10 2106202 0�146 1�478 1�434 0�153 0�678 1�059
4 200 0�50 20 CBC 10 96694 0�165 1�427 1�467 0�232 0�792 1�034
5 200 0�25 30 NBC 26 3486224 0�149 1�445 1�488 0�360 Ð Ð
6 200 0�15 40 CBC 10 2106202 0�150 1�466 1�507 0�367 0�829 1�040
7 200 0�10 40 CBC 10 2846274 0�150 1�462 1�505 0�377 0�825 1�042
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With an increase in a from 0� to 10� the critical Re remained virtually constant �Recr � 51�. At

higher a, Recr showed a decrease, with a minimum value attained at a � 45� (Recr � 42). It needs to

be reiterated that the Reynolds number was based on the projected width. Thus at a � 45� the critical

Reynolds number based on the side dimension was about 30.

Except for the studies of Kelkar and Patankar15 and Norberg and co-workers8, both for zero

incidence, there cannot be found in the open literature any investigation for prediction of the onset of

vortex shedding for square cylinders. From a numerical linear stability analysis at a blockage b of

14�2% �H � 7; see Table I), Kelkar and Patankar (using an NBC) report Recr � 53, whereas in the

practically zero-blockage experiments of Norberg and co-workers8 the critical value is estimated to

be in the range Recr � 47� 2. As the present investigation at b � 5% gave Recr � 51�2� 1�0, it may

be conjectured that the critical Reynolds number increases with increasing blockage.

It is important to mention that on applying the present analysis to our previously calculated cases at

a � 0�,16 the critical value was Recr � 52�0. In that previous investigation the far-®eld resolution was

D � 0�7 using an NBC as compared with the present value of D � 0�5 using a CBC. Otherwise the

Figure 5. Onset of vortex shedding: (a) raw transient �Re � 55; a � 0��; (b) instantaneous growth rate S versus R � jCj2=jCj2sat

�Re � 55; a � 0��; (c) linear global growth versus Reynolds number �a � 0��; (d) critical Reynolds number for different angles
of incidence

Table V. Calculated critical values

a � 0� a � 10� a � 20� a � 30� a � 45�

Recr 51�2 51�0 48�7 44�0 42�0
Rocr 5�9 6�2 6�1 5�4 5�2
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numerical parameters were the same. It is unclear whether this discrepancy is mostly due to the

different outlet boundary condition or to the difference in D. Nevertheless, it may be that an even

®ner grid than the present one (using the CBC) could produce slightly lower critical Reynolds

numbers.

4.5. Effect of angle of incidence

The effect of the angle of incidence �a � 0� 45�� for different Reynolds numbers �Re � 45 200�
was investigated and results are shown in Figure 6.

When increasing the angle of incidence at different Re, it is worth mentioning some features in the

development of a separated region at the downstream part of the body which are related to changes in

Figure 6. (a) Strouhal number (St), (b) drage coef®cient �CD�, (c) RMS lift coef®cient �CL0 �, (d) lift coef®cient �CL�, (e) moment
coef®cient �CM� and (f) base suction coef®cient � ÿ Cpb� versus angle of incidence for different Re
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the time mean position of the ordinary separation points. Note that the actual instantaneous separation

points in some cases were actually time-dependent. During some time intervals within the shedding

period and for some cases, secondary separations were also present. The following description relates

to the global mean (time-averaged) fully developed shedding ¯ow.

At Re4 100 and a � 0� the separation points were located at the rear corners. Our previous

investigations8,16 show for this zero-incidence case that separation actually occur at the rear corners

for Re4 125. However, cases at Re � 125 were not calculated in this study. On increasing a from

zero, still for Re4 100, the location of the upper separation point moved upstream along the upper

surface and at around a � 10� 20� (decreasing with increasing Re) it reached the windward upper

corner where it than remained ®xed for higher a (up to a � 45�). Probably, at around Re � 125 this

changeover occurs without a change in the angle of incidence. Within this process the lower

separation point remained ®xed at the rear corner. At higher Reynolds numbers �1504Re4 200�
and for a � 0� the separation points were located at the upstream corners. With an increase in a the

lower separation point ®rst moved downstream on the lower surface �a < 6�� and was then located at

the lower rear (leeward) corner for a5 6�. For all a within this range of Reynolds numbers the

location of the upper separation point was not changed. In cases where both separation points are

located at the upper and lower corners, i.e. at points de®ning the projected width (the diameter), the

¯ow may be referred to as fully separated.

The Strouhal number increases smoothly on increasing the angle of incidence; see Figure 6(a). At

each angle of incidence from one Reynolds number to another the value of the increase in Strouhal

number is different. As can be seen in Figure 6(a), this difference between Reynolds numbers 50 and

100 is maximum and then decreases. Similar changes are also seen for the RMS lift coef®cient �CL0 �;
see Figure 6(c) (CL0 may be used as a measure of the vortex-shedding strength). On increasing the

Reynolds number, CL0 increases sharply and, for each angle of incidence, approximately half of these

changes occur between Reynolds numbers 50 and 100.

The rates of change for St and CL0 versus a (particularly for a4 20�) change sharply on increasing

Re. As can be seen in Figure 6, for Re � 200 the majority of these changes occur in the range a4 20�

and then the changes are smooth. One possible reason is the occurrence of fully separated ¯ow for

higher angles of incidence.

Considering CD versus a for different Reynolds numbers (Figure 6(b)), a local minimum on CD

curve occurs within the range a4 20�. In these low-Reynolds-number ¯ows the changes in CD with a
are similar to those in turbulent ¯ow, but with differences in ¯ow pattern. The occurrence of a local

minimum in CD in turbulent ¯ow is due to the formation of attachment points on windward surfaces,

which was not observed in this range of Reynolds numbers. Possibly, for the present low Re this local

minimum in CD is also due to the changeover to the fully separated condition.

Figure 6(d) shows that for Re > 100 the mean lift coef®cient has a local minimum at around

a � 6�. It then increases and passes through zero lift at around 10� < a < 20�. For Re < 100,

however, the lift is positive at all angles of incidence. For most cases the lift due to pressure was

negative (downwards), while the lift due to friction was positive. At low Re the frictional lift is

greater than the pressure lift, whereas the opposite behaviour was seen at higher Re and lower a. This

causes the local minimum in lift coef®cient at higher Re. The zero lift at around a � 10� 20� at

higher Re is due to a balance between frictional and pressure lift coef®cients. Considering CM versus

a (Figure 6(e)), CM reaches a minimum at approximately a � 20�; 15�; 10� and 10� for

Re � 50; 100; 150 and 200 respectively. Irrespective of the Reynolds number, however, the slope

of CM close to zero incidence is negative �@CM=@a < 0�. As the turning moment was de®ned as

positive in the clockwise direction, this means that the square cylinder within this range of Re, as also

for much higher Re,3 has a stable posture.

LOW-Re FLOW AROUND A SQUARE CYLINDER AT INCIDENCE 53

# 1998 John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL. 26: 39±56 (1998)



Finally, from Figure 6(f) it is seen that the base pressure coef®cient increases sharply with

increasing angle of incidence. The minimum and maximum differences between results for different

Re are seen at a � 0� and 45�. This is due to the more vigorous vortex shedding found at higher

angles of incidence and for higher Re, respectively.

5. CONCLUDING REMARKS

Calculations of unsteady, incompressible 2D ¯ow around a square cylinder at incidence and for low

Reynolds numbers �Re � 45 200� have been carried out.

At the outlet of the computational domain a convective Sommerfeld boundary condition (CBC) is

compared with a traditional Neumann condition (NBC). This comparison proves the CBC to be more

effective in reducing the CPU time, reducing the upstream in¯uence from the outlet and thus reducing

the necessary downstream extent �Xd� of the domain. Within the present Reynolds number range it is

recommended to use Xd > 15 (Xd > 10 for Re � 100 200�. However, with the NBC, if Xd is

suf®ciently large, i.e. for Xd > 25 approximately, the upstream in¯uence of the outlet is effectively

damped out. In these outlet-independent cases, for both the NBC and CBC, the near-body ¯ow

patterns are virtually identical and the differences between global quantities such as Strouhal number,

drag, RMS lift, etc. are negligible.

A decrease in blockage from 5% to 2�5% for Re � 100 200 and zero incidence resulted in a slight

decrease (less than 1�5%) in Strouhal number, mean drag and RMS lift, less than a 3% increase in

stagnation pressure and a maximum 8% decrease �Re � 100� in base suction.

For the range of Reynolds number considered, it is recommended that the cell Reynolds number

(based on the far-®eld resolution) should be less than 30.

For the full range of possible incidences, i.e. 0�4a4 45�, the onset of vortex shedding occurred

within the interval 40 < Recr < 55, with a decrease in Recr with increasing a. Using a procedure

based on the linearized Stuart±Landau equation, at a blockage of 5%, individual critical values at

some selected incidences were calculated. For instance, at incidence a � 0� and 45� the onset values

were Recr � 51�2� 1�0 and 42�0� 1�0 respectively.

The study also provides data on the in¯uence of Re and angle of incidence on quantities such as

Strouhal number and lift, drag, moment and base suction coef®cients. It is found that the behaviour at

low angles of incidence (particularly at a4 20�� is different from the fully separated ¯ow at higher

angles of incidence.

Experimental studies on this ¯ow con®guration for these low Reynolds numbers are very scarce.

The available experiments have all been carried out for the case of zero incidence, i.e. with one side

facing the oncoming ¯ow. Nevertheless, when considering the effects of different blockages,

experimental uncertainties and numerical inaccuracies, the agreement seems satisfactory. However,

accurate measurements, especially at various angles of incidence, are still needed. In particular, the

question of the transitional Reynolds number, i.e. the critical Re above which the ¯ow ceases to be

laminar and cannot be made two-dimensional, needs further investigation.
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